Towards A Competitive Air Transport Market in Africa:

The Role of Bilateral Air Service Agreements Liberalization

Megersa Abate

The World Bank

Anca D. Cristea University of Oregon Daniel A. Benitez

InfraXchange The World Bank 5 April 2022

Introduction

 Air transport services are essential for countries' economic growth and development

- travel is crucial for market access and global integration
- international trade and FDI depend on air transport
- technology transfers and knowledge diffusion increase with spatial mobility
- Air transport network can grow and connect regions at a faster pace than other modes of transport

Compared to building continental highway or railway systems

Air Transport Markets in Africa

In Africa:

Air transport services lag behind compared to rest of world

- 2-3% of the global air passenger market
- 17% of the world's population
- 7.2% of the world's middle class

(Source: African Development Bank Group, 2019)

Air Transport Markets in Africa

In Africa:

Air transport services lag behind compared to rest of world

- 2-3% of the global air passenger market
- 17% of the world's population
- 7.2% of the world's middle class

(Source: African Development Bank Group, 2019)

- Why the slow growth of air transport services?
 - restrictive international aviation regulation
 - burdensome domestic air regulations
 - domestic political environment + weak institutions
 - other factors (e.g., financial frictions, geography, etc.)

Air Transport Markets in Africa

This study:

- Analyze empirically the impact of international regulation on air transport services in Africa
- Focus on the market transformations brought by policy liberalization

This Paper

Research Questions:

- 1. Contribution of *Bilateral Air Service Agreements (BASAs)* to the growth and development of air passenger transport within Africa
- 2. Does the *liberalization* of BASAs affect African consumers by generating sizable *welfare gains*?

This Paper

Methodological approach:

 Identify the market mechanisms through which BASA liberalization affects air transport markets

- Propose econometric models to estimate the effect of BASA liberalization on:
 - passenger flows
 - average air fare
 - flight frequency
 - market competition (i.e., number of airlines)

 Use estimated coefficients to construct back of the envelope welfare calculations

Preview of Results

► BASA liberalization lowers average air fares → 16% fall in air fares (direct effect)

- Passenger volumes increase as a result of liberalizationinduced price changes
 - \rightarrow 30% increase in air passengers (indirect effect)
- No significant direct effect of liberalization on flight frequency

 28% increase in departures from liberalization-induced
 passenger growth (indirect effect)
- No significant effect of liberalization on market competition

Cumulative effects of BASA liberalization:

► Combining all the direct & indirect effects into one statistic:
→ benefits equivalent to a 50% drop in air fares

Consumer welfare gains:

 \rightarrow range between **290-ml and 513-ml US\$** for year 2019

Roadmap

- 1. Policy Background
- 2. Data sample + descriptives
- 3. Estimation methodology
- 4. Regression results
- 5. Consumer welfare effects of BASA liberalization

Bilateral Air Service Agreements (BASAs)

- Global aviation markets are governed by bilateral air service agreements (BASAs)
 - multilateral agreements are harder to negotiate and implement
 - bilateral agreements serve as incremental steps towards market openness

A typical BASA signed between two countries regulates:

- **market** access \rightarrow point-to-point aviation routes
- capacity \rightarrow frequency of flights per route
- market competition → designated airlines to operate service
- \blacksquare pricing \rightarrow e.g., double disapproval of air fares
- traffic rights \rightarrow e.g., 5th freedom = pick/drop traffic on-route

Bilateral Air Service Agreements (BASAs)

Liberalization of BASAs = removal of market restrictions

Define two indicator variables:

- Partial liberalization = full deregulation of ONE key set of provisions (e.g., capacity, pricing, fifth freedom)
- Full liberalization = full deregulation in TWO OR MORE sets of provisions

Data Sample

Sample coverage:

- 71 country pairs within Africa
- period: 2011-2019
- \blacksquare unbalanced panel \rightarrow between 55-59 pairs observed per year

▶ Air transport data → bi-directional by country pair, year:

- \blacksquare volume of passengers \rightarrow Sable Intelligence
- \blacksquare average air fare \rightarrow Sable Intelligence
- \blacksquare number of departures (flight frequency) \rightarrow OAG database
- number of destinations (domestic + foreign) \rightarrow OAG database
- \blacksquare BASA status \rightarrow World Bank surveys of aeronautical authorities
- \blacksquare other aviation indicators \rightarrow IATA reports
- Other country level data \rightarrow WDI, CEPII, COMTRADE

Sample Coverage: Intra-Africa Air Travel in 2019

Top 10 countries:

- 1. South Africa
- 2. Kenya
- 3. Morocco
- 4. Egypt
- 5. Ethiopia
- 6. Nigeria
- 7. Zimbabwe
- 8. Senegal

イロト イヨト イヨト

- 9. Tanzania
- 10 Cote d'Ivoire

14 / 39

(1.2e+06,4.2e+06) (945000,1.2e+06) (491000,945000) (364000,491000) (258000,364000) [62000,258000] No data

Traffic Growth Over the Sample Period

BASA Liberalization in our Data Sample

Impact of BASA Liberalization

17/39

Estimation Methodology

Notation: i, j =signatory countries t =year (2011–2019)

1. Passenger regression:

 $lnPax_{ijt} = \alpha_1 lnFare_{ijt} + \alpha_2 lnFreq_{ijt} + X_{it} + X_{jt} + X_{ijt} + c_i + c_j + u_t + \epsilon_{ijt}$

2. Air fare regression:

$$\begin{aligned} \text{InFare}_{ijt} &= \beta_1 \text{InPax}_{ijt} + \beta_2 \text{PartLib}_{ijt} + \beta_3 \text{FullLib}_{ijt} + \beta_4 \text{InNoAirlines}_{ijt} + \\ &+ Z_{it} + Z_{jt} + Z_{ijt} + c_i + c_j + u_t + \epsilon_{ijt} \end{aligned}$$

3. Flight frequency regression:

$$\begin{split} \textit{InFreq}_{ijt} = \gamma_1 \textit{InPax}_{ijt} + \gamma_2 \textit{PartLib}_{ijt} + \gamma_3 \textit{FullLib}_{ijt} + \gamma_4 \textit{InNoAirlines}_{ijt} + \\ + V_{it} + V_{jt} + V_{ijt} + c_i + c_j + u_t + \epsilon_{ijt} \end{split}$$

4. Market competition regression:

 $InNoAirlines_{ijt} = \delta_1 PartLib_{ijt} + \delta_2 FullLib_{ijt} + W_{it} + W_{jt} + W_{ijt} + c_i + c_j + u_t + \epsilon_{ijt}$

Estimation Methodology

Estimation challenges:

Endogeneity

 \rightarrow key variables on both left and right side of regression eq. \rightarrow solution: instrumental variables (2SLS) methodology

Simultaneity and Omitted Variable Bias

 \rightarrow countries that liberalize BASAs do other "good" things \rightarrow solution: regression controls + country & time fixed effects

Passenger Regression

Passenger regression:

 $lnPax_{ijt} = \alpha_1 lnFare_{ijt} + \alpha_2 lnFreq_{ijt} + X_{it} + X_{jt} + X_{ijt} + c_i + c_j + u_t + \epsilon_{ijt}$

Control variables:

- $X_{it}, X_{jt} = \{ \text{Per-capita GDP, Population, Urban density} \}$
- X_{ijt} = {Traded value, Distance, Contiguity, Common language}

Excluded instruments:

• Fare_{ijt} \rightarrow cost shifters ={fuel cost, avg. airplane size, # airlines}

• $Freq_{ijt} \rightarrow air network = \{ \# \text{ destinations, avg. plane size, } \# airlines \}$

Air Fare Regression

Air fare regression:

$$\begin{split} \textit{InFare}_{ijt} &= \beta_1 \textit{InPax}_{ijt} + \beta_2 \textit{PartLib}_{ijt} + \beta_3 \textit{FullLib}_{ijt} + \beta_4 \textit{InNoAirlines}_{ijt} + \\ &+ Z_{it} + Z_{jt} + Z_{ijt} + c_i + c_j + u_t + \epsilon_{ijt} \end{split}$$

Control variables:

Excluded instruments:

■ Pax_{ijt} → demand shifters ={Population, Urban density, Common language}

Flight Frequency Regression

Flight frequency regression:

$$\begin{split} \textit{InFreq}_{ijt} &= \gamma_1\textit{InPax}_{ijt} + \gamma_2\textit{PartLib}_{ijt} + \gamma_3\textit{FullLib}_{ijt} + \gamma_4\textit{InNoAirlines}_{ijt} + \\ &+ V_{it} + V_{jt} + V_{ijt} + c_i + c_j + u_t + \epsilon_{ijt} \end{split}$$

Control variables:

- $V_{it}, V_{jt} = \{\text{Total } \# \text{ destinations per country}\}$
- $V_{ijt} = \{ \text{Distance, Airplane size} \}$

Excluded instruments:

■ Pax_{ijt} → demand shifters ={Population, Urban density, Common language}

Market Competition Regression

Market competition regression:

 $InNoAirlines_{ijt} = \delta_1 PartLib_{ijt} + \delta_2 FullLib_{ijt} + W_{it} + W_{jt} + W_{ijt} + c_i + c_j + u_t + \epsilon_{ijt}$

Control variables:

W_{it}, W_{jt} = {GDP = Pop×PcGDP, Total #destinations per country}
 W_{it} = {Distance, Traded value}

No endogenous variables

Passenger Regression

	(1) OLS	(2) OLS	(3) 2SLS
Ln Avg Airfare	-0.574***	-0.468***	-1.390***
	[0.157]	[0.108]	[0.513]
Ln Flight Frequency	1.346***	1.311***	1.370***
	[0.037]	[0.035]	[0.201]
Ln PcGDP c1	0.500***	-0.213	-0.362
	[0.068]	[0.546]	[0.879]
Ln PcGDP c2	-0.116	-0.143	-0.716
	[0.147]	[0.607]	[0.859]
Ln Population c1	0.198***	-2.342	-1.274
	[0.049]	[1.656]	[2.554]
Ln Population c2	0.224***	-2.029	-0.826
·	[0.041]	[1.684]	[2.558]
Ln Urban Density c1	-0.569**	0.126	0.133
	[0.241]	[1.801]	[3.462]
Ln Urban Density c2	-0.356	-0.748	-0.240
	[0.222]	[1.916]	[3.425]
Ln Distance (weighted)	-0.520***	-1.290***	-0.488
	[0.132]	[0.140]	[0.428]
Ln Trade	0.014	0.030	0.029
	[0.012]	[0.021]	[0.023]
1 = Common Border	-0.791***	-1.212***	-1.451***
	[0.142]	[0.152]	[0.274]
1 = Common Language	0.099	0.828***	0.677***
	[0.097]	[0.113]	[0.239]
Country FE	NO	YES	YES
Year FE	YES	YES	YES
Ohaanvatiana	E1E	515	E1E
Diservations Diservations	515	515	0 765
R-squared	0.705	0.760	0.705
F-Slat Honsen Listot			4.072
Hansen I n.val			0.002
nansen s p-val			0.002

Delevent entered entered in here derive

24 / 39

Air Fare Regression

	(1)	(2)	(3)
	OLS	OLS	2SLS
Ln Passengers	-0.018*	0.001	-0.071*
	[0.010]	[0.010]	[0.037]
1 = Partial Liberalization 1 = Full Liberalization	-0.053** [0.021] -0.110*** [0.026]	-0.112** [0.040] -0.147*** [0.038]	-0.177** [0.078] -0.166** [0.078]
Ln Number Airlines	-0.066	-0.163*	-0.053
	[0.047]	[0.077]	[0.072]
Ln Avg Aircraft Size	-0.535***	-0.525***	-0.371***
	[0.074]	[0.101]	[0.128]
Ln Fuel Cost	0.080	0.065	0.070
	[0.069]	[0.075]	[0.091]
Ln PcGDP c1	0.077***	0.211	0.280
	[0.017]	[0.134]	[0.220]
Ln PcGDP c2	-0.021	-0.025	-0.012
	[0.014]	[0.146]	[0.213]
Ln Distance (weighted)	0.832***	0.827***	0.654***
	[0.062]	[0.084]	[0.114]
Country	NO	YES	YES
Year FE	YES	YES	YES
Observations	515	515	515
R-squared	0.622	0.768	0.732
F-stat Hansen J stat Hansen J p-val			5.142 12.89 0.012

Robust standard errors in brackets

*** p<0.01, ** p<0.05, * p<0.10

Flight Frequency Regression

	(1)	(2)	(3)
	OLS	OLS	2SLS
Ln Passengers	0.445***	0.408***	0.405***
	[0.040]	[0.043]	[0.060]
1 = Partial Liberalization 1 = Full Liberalization	0.088 [0.072] 0.007 [0.092]	0.022 [0.194] -0.043 [0.219]	0.019 [0.167] -0.044 [0.159]
Ln Number Airlines	0.624***	0.543***	0.548***
	[0.055]	[0.076]	[0.144]
Ln Avg Aircraft Size	-0.353***	-0.472***	-0.466**
	[0.092]	[0.137]	[0.197]
Ln Total AirLinks c1	0.105	0.264	0.263*
Ln Total AirLinks c2	0.094	0.187	0.186
Ln Distance (weighted)	0.522***	0.381***	0.375***
	[0.087]	[0.098]	[0.141]
Country	NO	YES	YES
Year FE	YES	YES	YES
Observations	515	515	515
R-squared	0.706	0.772	0.772
F-stat Hansen J stat Hansen J p-val			6.787 6.126 0.190

Robust standard errors in brackets

*** p<0.01, ** p<0.05, * p<0.10

Market Competition Regression

	(1) OLS	(2) OLS	(3) OLS
1 = Partial Liberalization 1 = Full Liberalization	0.028 [0.027] 0.113*** [0.026]	-0.064 [0.056] 0.100 [0.055]	-0.092 [0.059] 0.071 [0.058]
Ln Total AirLinks c1 Ln Total AirLinks c2 Ln Trode	-0.024 [0.020] 0.075*** [0.020]	0.374*** [0.095] 0.233** [0.090]	0.353*** [0.102] 0.287** [0.114] 0.010
Ln GDP c1 Ln GDP c2			[0.006] -0.036 [0.118] -0.107
Ln Distance (weighted)	-0.586*** [0.014]	-0.554*** [0.012]	[0.147] -0.547*** [0.027]
Country Year FE	NO YES	YES YES	YES YES
Observations R-squared	515 0.365	515 0.672	515 0.676

Robust standard errors in brackets

*** p<0.01, ** p<0.05, * p<0.10

Summary of BASA Liberalization Results

► Air fares:

 \rightarrow Direct effects: 16.2%~fall from partial liberalization

 \rightarrow Direct effect: 15.3% fall from full liberalization

Passenger volumes:

 \rightarrow NO direct effect (by construction)

 \rightarrow Indirect effect (airfare $\downarrow):$ **30% growth** from partial/full lib.

Flight frequency:

 \rightarrow NO (estimated) direct effect

 \rightarrow Indirect effect (pax^): 28% growth from partial/full lib.

Market competition:

 \rightarrow NO (estimated) direct or indirect effects

Summary of BASA Liberalization Results

Partial effects (direct & indirect) are informative on their own

For policy analysis: How to aggregate partial effects into a cumulative statistics?

Price-equivalent effect of BASA liberalization:

- use price elasticities to convert quantity units intro price effects
- aggregate direct and indirect price effects into a total effect

Price-equivalent Effect of BASA Liberalization

Price-Equivalent Effect of BASA Liberalization

	Estimated Effects of Air Liberalization			
	Partial Liberalization		Full Libe	ralization
	OLS	2SLS	OLS	2SLS
Total Price Effect:	- 0.112	- 0.227	- 0.146	- 0.213
Direct Effect: Indirect Effect via Quantity:	- 0.112 0.000	- 0.177 0.050	- 0.147 0.000	- 0.166 - 0.047
Total Frequency Effect: Of which:	0.046	0.288	0.060	0.270
Direct Effect: Indirect Effect via Quantity:	0.000 0.046	0.000 0.288	0.000 0.060	0.000 0.270
Price Equivalent of Frequency Effect:	- 0.129	- 0.284	- 0.168	- 0.266
Total Price Effect of Air Liberalization	-0.241	- 0.511	-0.314	- 0.480

 \Rightarrow Liberal BASAs generate benefits equivalent to a 48–51% fall in air fares

Consumer Welfare Calculations

Main idea:

 \rightarrow use the price equivalent effect of BASA liberalization to calculate welfare changes

- Approaches to welfare calculations:
 - 1. Change in Consumer Surplus
 - 2. Compensating Variation

Change in Consumer Surplus

33 / 39

イロト イボト イヨト イヨト

Change in Consumer Surplus

	Welfare Effects: Δ Consumer Surplus				
	Fare Savings New Passenger to Existing Pax Gains		Total Increase in Consumer Surplus		
Year	(mil USD)	(mil USD)	(mil USD)		
2011	190.01	151.62	341.63		
2012	202.81	162.56	365.36		
2013	224.97	177.48	402.45		
2014	285.29	223.85	509.14		
2015	263.45	207.55	471.00		
2016	262.91	206.96	469.88		
2017	249.08	192.24	441.32		
2018	301.99	232.29	534.28		
2019	290.26	223.11	513.37		

Compensating Variation

Compensating Variation

		Welfare Effects: Compensating Variation			
Year	Air Travel [¯] Revenue (mil USD)	Partial Lib. (mil USD)	Full Lib. (mil USD)	Total Gains (mil USD)	% of Travel Revenue
2011	1037.539	98.00	92.01	190.01	18.31
2012	1138.599	111.18	91.63	202.81	17.81
2013	1099.392	97.58	127.39	224.97	20.46
2014	1138.051	112.76	172.53	285.29	25.07
2015	1062.553	111.72	151.73	263.45	24.79
2016	1054.07	110.03	152.88	262.91	24.94
2017	998.2566	69.61	179.47	249.08	24.95
2018	1174.156	77.29	224.70	301.99	25.72
2019	1135.406	72.89	217.37	290.26	25.56

Summary of Consumer Welfare Calculations

- BASA liberalization generates consumer benefits equivalent to 48–51% fall in air fares
- Consumer welfare gains range between 290-ml and 513-ml US\$ for year 2019

Caveats and Considerations

Important to note:

- No account of domestic aviation policies
 - \rightarrow Administrative hold-ups like airport charges and fees
 - \rightarrow Domestic market competition and entry barriers
 - \rightarrow Other domestic factors

Conclusions

- Contribution of *Bilateral Air Service Agreements (BASAs)* to the growth and development of air passenger transport within Africa
- Find direct evidence that BASA liberalization
 - reduces air fares
 - increases air traffic
 - increases flight frequency
 - \Rightarrow equivalent to a price reduction of 48-51%
- Consumer welfare gains range between 290-513 ml. US\$